A genome-wide screen for beta-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression.
نویسندگان
چکیده
Mutations in components of the Wnt signaling pathway initiate colorectal carcinogenesis by deregulating the beta-catenin transcriptional coactivator. beta-Catenin activation of one target in particular, the c-Myc proto-oncogene, is required for colon cancer pathogenesis. beta-Catenin is known to regulate c-Myc expression via sequences upstream of the transcription start site. Here, we report that a more robust beta-catenin binding region localizes 1.4 kb downstream from the c-Myc transcriptional stop site. This site was discovered using a genome-wide method for identifying transcription factor binding sites termed serial analysis of chromatin occupancy. Chromatin immunoprecipitation-scanning assays demonstrate that the 5' enhancer and the 3' binding element are the only beta-catenin and TCF4 binding regions across the c-Myc locus. When placed downstream of a simian virus 40-driven promoter-luciferase construct, the 3' element activated luciferase transcription when introduced into HCT116 cells. c-Myc transcription is negligible in quiescent HCT116 cells but is induced when cells reenter the cell cycle after the addition of mitogens. Using these cells, we found that beta-catenin and TCF4 occupancy at the 3' enhancer precede occupancy at the 5' enhancer. Association of c-Jun, beta-catenin, and TCF4 specifically with the downstream enhancer underlies mitogen stimulation of c-Myc transcription. Our findings indicate that a downstream enhancer element provides the principal regulation of c-Myc expression.
منابع مشابه
A beta-catenin/TCF-coordinated chromatin loop at MYC integrates 5' and 3' Wnt responsive enhancers.
Aberrant MYC gene expression by the Wnt/beta-catenin pathway is implicated in colorectal carcinogenesis. Wnt/beta-catenin signaling stimulates association of the beta-catenin coactivator complex with two Wnt responsive enhancers (WREs) located in close proximity to MYC gene boundaries. Each enhancer directly binds members of the TCF/Lef family of transcription factors that, in turn, recruit bet...
متن کاملThe MYC 3′ Wnt-Responsive Element Drives Oncogenic MYC Expression in Human Colorectal Cancer Cells
Mutations in components of the Wnt/β-catenin signaling pathway drive colorectal cancer (CRC) by deregulating expression of downstream target genes including the c-MYC proto-oncogene (MYC). The critical regulatory DNA enhancer elements that control oncogenic MYC expression in CRC have yet to be fully elucidated. In previous reports, we correlated T-cell factor (TCF) and β-catenin binding to the ...
متن کاملBeta-catenin represses protein kinase D1 gene expression by non-canonical pathway through MYC/MAX transcription complex in prostate cancer
Down regulation of Protein Kinase D1 (PrKD1), a novel serine threonine kinase, in prostate, gastric, breast and colon cancers in humans leads to disease progression. While the down regulation of PrKD1 by DNA methylation in gastric cancer and by nuclear beta-catenin in colon cancer has been shown, the regulatory mechanisms in other cancers are unknown. Because we had demonstrated that PrKD1 is t...
متن کاملP-88: Assessing Expression Changes of Some Wnt Pathway Genes During Goat Early Embryonic Development
Background: The developmental competency of embryos is affected by several factors, including the developmental pathways and their elements. In mammalian species including goat, fertilized oocyte undergoes several divisions to form a structure called blastocyst. These events depend on the successful control of temporal and spatial expression of genes involved in genome activation. One of the cr...
متن کاملGenome-wide Prediction of Mammalian Enhancers Based on Analysis of Transcription-Factor Binding Affinity
Understanding the regulation of human gene expression requires knowledge of the "second genetic code," which consists of the binding specificities of transcription factors (TFs) and the combinatorial code by which TF binding sites are assembled to form tissue-specific enhancer elements. Using a novel high-throughput method, we determined the DNA binding specificities of GLIs 1-3, Tcf4, and c-Et...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 28 24 شماره
صفحات -
تاریخ انتشار 2008